Fast, Robust and Non-convex Subspace Recovery
نویسندگان
چکیده
This work presents a fast and non-convex algorithm for robust subspace recovery. The data sets considered include inliers drawn around a low-dimensional subspace of a higher dimensional ambient space, and a possibly large portion of outliers that do not lie nearby this subspace. The proposed algorithm, which we refer to as Fast Median Subspace (FMS), is designed to robustly determine the underlying subspace of such data sets, while having lower computational complexity than existing methods. We prove convergence of the FMS iterates to a stationary point. Further, under a special model of data, FMS converges to a point which is near to the global minimum with overwhelming probability. Under this model, we show that the iteration complexity is globally bounded and locally r-linear. The latter theorem holds for any fixed fraction of outliers (less than 1) and any fixed positive distance between the limit point and the global minimum. Numerical experiments on synthetic and real data demonstrate its competitive speed and accuracy.
منابع مشابه
A novel M-estimator for robust PCA
We study the basic problem of robust subspace recovery. That is, we assume a data set that some of its points are sampled around a fixed subspace and the rest of them are spread in the whole ambient space, and we aim to recover the fixed underlying subspace. We first estimate “robust inverse sample covariance” by solving a convex minimization procedure; we then recover the subspace by the botto...
متن کاملA Well-Tempered Landscape for Non-convex Robust Subspace Recovery
We present a mathematical analysis of a non-convex energy landscape for Robust Subspace Recovery. We prove that an underlying subspace is the only stationary point and local minimizer in a large neighborhood if a generic condition holds for a dataset. We further show that if the generic condition is satisfied, a geodesic gradient descent method over the Grassmannian manifold can exactly recover...
متن کاملA Pseudo-Bayesian Algorithm for Robust PCA
Commonly used in many applications, robust PCA represents an algorithmic attempt to reduce the sensitivity of classical PCA to outliers. The basic idea is to learn a decomposition of some data matrix of interest into low rank and sparse components, the latter representing unwanted outliers. Although the resulting problem is typically NP-hard, convex relaxations provide a computationally-expedie...
متن کاملNew Design Criteria for Robust PCA and a Compliant Bayesian-Inspired Algorithm
Commonly used in computer vision and other applications, robust PCA represents an algorithmic attempt to reduce the sensitivity of classical PCA to outliers. The basic idea is to learn a decomposition of some data matrix of interest into low rank and sparse components, the latter representing unwanted outliers. Although the resulting optimization problem is typically NP-hard, convex relaxations...
متن کاملDistributed Robust Subspace Recovery
We study Robust Subspace Recovery (RSR) in distributed settings. We consider a huge data set in an ad hoc network without a central processor, where each node has access only to one chunk of the data set. We assume that part of the whole data set lies around a low-dimensional subspace and the other part is composed of outliers that lie away from that subspace. The goal is to recover the underly...
متن کامل